x_{1} is the exponential result of base x_{2} to power/exponent x_{3}.

- dugri
- x
_{1}is the logarithm of x_{2}with base x_{3}. - te'a
- binary mathematical operator: to the power; exponential; [a to the b power].
- dektefpi'i
- x
_{1}is x_{2}times the x_{3}th power of 10 // x_{1 }= x_{2 \times 10^x} - kurtenfa
- t
_{1}is the square of t_{2}. - reltefpi'i
- x
_{1}is x_{2}times the x_{3}th power of 2 // x_{1 }= x_{2 \times 2^x} - tefpi'i
- x
_{1}is x_{2}times the x_{4}th power of x_{3}// x_{1 }= x_{2 \times x} - toltenfa
- x
_{1}is the exponential root of x_{2}with exponent x_{3}// x_{1}is the x_{3}th root of x_{2}// x_{1 }= \sqrt[x_{3]x} - fenfa
- x
_{1}(li) is an x_{3}rd root of x_{2}, with other (identifying) characteristics x_{4}. - enfa
- x
_{1}abstractly pertains to an exponential/root/logarithmic relationship between the elements of x_{2}(ordered pair) which are related via concrete relationship x_{3}.