x_{1} is a material conditional/'IF' statement (logical statement) saying that x_{2} (du'u) logically implies x_{3} (du'u) ("x_{3} is true if x_{2} is true; if x_{2}, then x_{3}; x_{2} being true is sufficient to guarantee the truth of x_{3}").

Beware the order of x_{2} (the consequent) and x_{3} (the antecedent/sufficient condition). This word is to "na ja" approximately as kanxe is to je. See also: kanxe, vlina, ribga, naja, .ifle, fi'ei.

- cnata
- x
_{1}is a logical 'if-else' (ternary conditional) statement saying that if x_{2}is true, then x_{3}is true (or performed), but otherwise/else (if x_{2}is not true, then) x_{4}is true (or performed). - skifa
- x
_{1}is a logical statement which says that x_{2}(du'u) being true logically implies (material implication) x_{3}being necessarily true, but in which the converse does not hold (it is certain that there are cases in which 'IFF' fails: x_{2}is not necessary for x_{3}). - tsida
- x
_{1}is a logical statement of proposition-equivalence/is a biconditional/'IFF' statement saying that x_{2}(du'u) is true if and only if x_{3}is true ("x_{2}is logically equivalent to x_{3}; x_{2}being true is sufficient and necessary for guaranteeing the truth of x_{3}; x_{2}iff x_{3}").